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Abstract

In this paper, an accurate series solution in conjunction with an energy formulation for the treatment of piezo-

composite plates with arbitrary geometry and aspect ratio, under both electrical and mechanical loadings are proposed.

A remedy for dealing with nonhomogeneous boundary conditions is also presented. Through introduction of amending

polynomials of order pk for the kth layer, the accuracy and convergence rate are dramatically improved. These poly-
nomials ensure continuity of the generalized displacement fields across the interfaces, while their derivatives can have

the required discontinuities up to a desired order. Moreover, depending on the nature of the physical problem under

consideration, incorporation of the appropriate functions result in greater convergence rate and precision of the

solution.
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1. Introduction

The statical and dynamical applications of piezoelectric materials have a critical role in recent advances

and developments of ‘‘smart structures’’ and ‘‘smart materials’’. Piezoelectrics polarize under applied
stresses (direct effect) and deform when subjected to an electric field (converse effect). The desirability of

integration of piezoelectric sensors with ‘‘smart structural systems’’ is due to their instrumental direct effect

for strain measurements. On the other hand, the converse effect of the piezoelectric actuators is imple-

mented for controlling vibrations and elastic deformations of such structures. The early applications were

related to control of vibrations of mirrors when subjected to sound vibrations (Forward, 1979). Realizing

that local measurements and actuations are not the best means for controlling the continuous behavior of

structures, the piezoelectric sensors and actuators are integrated continuously with the structural systems.

In this manner, the piezoelectric sensor is able to detect the location and type of cracks that occur in the
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system. The piezoelectric devices experience stresses and deformation during their service life, therefore the

need for reliability and optimum performance of such devices require investigations of their electrome-

chanical behaviors.

Tiersten (1969) formulated the governing equations for the vibration of piezoelectric plates and inves-
tigated their fundamental electro-mechanical behavior. Two- and three-dimensional analysis of simply

supported piezoelectric plates have been addressed by several investigators; see, for example, Ray et al.

(1992), Heyliger and Brooks (1996), Ruan et al. (1999) for two-dimensional analysis, and Ray et al. (1993),

Heyliger (1994), Bisegna and Maceri (1996), and Reddy and Cheng (2001) for three-dimensional analysis.

In several of the above mentioned reports, some simplifications have been made. For example, Ray et al.

(1993), presume that the three-three component of the piezoelectric tensor equal to zero, i.e. e33 ¼ 0. As a
result the continuities of normal electric induction field and electric potential at the interface between the

layers are not satisfied. Ruan et al. (1999), have used an approximation for the distribution of electric
potential through the thickness of the plate. Most of the reports in the literature are tailored for the

treatments of simply supported rectangular piezoelectric plates. Henceforth, a unified approach which can

accurately handle piezocomposite plates of arbitrary geometries consisting of layers with arbitrary thick-

ness, and various types of boundary conditions is in order.

In the literature, most of the available exact closed-form solutions, are limited to simple geometries

under simple applied loadings and boundary conditions. Whereas, the current investigation develops a

general theory based on three-dimensional elasticity, without the need for any simplifying assumptions. The

remarkable accuracy and robustness of the proposed approach are established by reconsideration of the
problem examined by Heyliger (1994), a special case for which the exact closed-form solution exists. For

demonstration of the generality and applicability of the present theory to complex irregular geometries, the

solution to star-shaped piezocomposite plate is given. As another interesting application, the problem of

perforated piezocomposite plate is addressed. The exact solutions for the star-shaped and the perforated

plates mentioned above do not exist, moreover, due to the presence of sharp corners, interfaces, and ir-

regularity in the geometry, its treatment by the existing numerical techniques such as finite element method

would be a very difficult task.
2. Governing equations of piezoelectricity

The electromechanical behavior of piezoelectric materials is a coupled phenomenon. For linear piezo-

electric medium, the stress r, strain s, electric field E, and electric induction D are related through the

constitutive equations
rij ¼ Cijklskl � ekijEk; i; j; k; l ¼ 1; 2; 3; ð1aÞ

Di ¼ eijksjk þ kijEj; i; j; k ¼ 1; 2; 3: ð1bÞ

Employing the abridge notations ðijÞ ! i, and ðklÞ ! j Eqs. (1a) and (1b) may equivalently be rewritten as
ri ¼ Cijsj � ekiEk; i; j ¼ 1; 2; . . . ; 6 and k ¼ 1; 2; 3; ð2aÞ

Di ¼ eiksk þ kijEj; i; j ¼ 1; 2; 3 and k ¼ 1; 2; . . . ; 6; ð2bÞ
where
r1 r2 r3 r4 r5 r6f g 	 r11 r22 r33 r23 r13 r12f g; ð3aÞ

s1 s2 s3 s4 s5 s6f g 	 s11 s22 s33 2s23 2s13 2s12f g: ð3bÞ
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The abridged components of the elastic moduli C in Eq. (2a) comply with the relations (3a) and (3b).

e and k are the piezoelectric and dielectric tensors, respectively. For a displacement field u and electric

potential function U we have
sij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
; i; j ¼ 1; 2; 3; ð4aÞ

Ei ¼ � oU
oxi

; i ¼ 1; 2; 3: ð4bÞ
In the SI system, the dimensions of the variables introduced above are as follows
½s� ¼ ½ �; ½r� ¼ Nm�2; ½E� ¼ Vm�1 ¼ NC�1;

½D� ¼ Cm�2 ¼ NV�1m�1; ½C� ¼ Nm�2;

½e� ¼ Nm�1 V�1 ¼ Cm�2; ½k� ¼ C2N�1m�2 ¼ NV�2; ½U� ¼ V :

ð5Þ
In the absence of body forces and charges, the equilibrium equations and charge equation of electro-

statics become
rij;j ¼ 0; ð6aÞ

Di;i ¼ 0: ð6bÞ

For convenience the following notations are introduced
Pmn ¼

Cmn; 16m; n6 6;
ehm; 16m6 6; 76 n6 9;
egn; 76m6 9; 16 n6 6;
�kgh; 76m6 9; 76 n6 9;

8>><
>>:

ð7Þ
where Pmn is referred to as generalized modulus,
g ¼ m� 6; ð8aÞ

h ¼ n� 6: ð8bÞ

Similarly the generalized displacement Um, generalized stress Rm, generalized strain Sm, and generalized

traction Tm, are defined by
Um ¼ um; 16m6 3;
U; m ¼ 4;

�
ð9aÞ

Rm ¼ rm; 16m6 6;
Dg; 76m6 9;

�
ð9bÞ

Sm ¼ sm; 16m6 6;
�Eg; 76m6 9;

�
ð9cÞ

Tm ¼ rmjnj; 16m6 3;
Djnj; m ¼ 4:

�
ð9dÞ
In view of the above arguments, the generalized strain is written as
Sm ¼ LmnUn; ð10Þ
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: ð11Þ
Accordingly, Eqs. (2) and (6) are cast into the following generalized constitutive and generalized equi-

librium equations
Rn ¼ PmnSm; ð12Þ

LmnRm ¼ 0; m ¼ 1; 2; . . . ; 9; n ¼ 1; 2; . . . ; 4: ð13Þ

Combining Eqs. (10), (12) and (13) we obtain
AmnUn ¼ 0; ð14Þ

where Amn is the generalized equilibrium coefficient operator
Amn ¼ LimPijLjn: ð15Þ

The boundary conditions are expressed in the following manner
BmnUn ¼ TmðUnÞ � Tm
Um � Um

� �
¼ 0; m; n ¼ 1; 2; . . . ; 4; ð16Þ
in which Bmn is the generalized boundary condition operator, nj is the direction cosine, and T m is the
prescribed generalized traction on the generalized traction boundary, CR. Um is the prescribed generalized

displacement vector on the generalized displacement boundary, CU .

The stored energy density W of a piezoelectric medium is given by:
W ¼ 1
2
ðSiPijSjÞ; ð17Þ
which can be written as
W ¼ 1
2
ðrisi � EkDkÞ ¼ 1

2
ðCijsisj � 2ekjEksj � kklEkElÞ; i; j ¼ 1; 2; . . . ; 6 and k; l ¼ 1; 2; 3: ð18Þ
The total energy functional, F of the system is
F ¼
Z

X
W dX �

Z
CR

TmUm dC; m ¼ 1; 2; . . . ; 4: ð19Þ
Using the weighted residual Galerkin method and selecting dUm as weight functions, the following
variational relation holds
dF ¼ 0: ð20Þ
3. A rational three-dimensional solution of the field equation

A versatile solution of Eq. (14) subjected to the boundary conditions (16) is sought. The proposed so-

lution is obtained by the superposition of a special function which accommodates nonhomogeneous
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kinematical boundary conditions and a series suitable for treating thick plates with arbitrary geometries.

To this end the generalized displacement fields are expressed in the following form
Umðx; y; zÞ ¼ fmðx; y; zÞ þ
Xp
q¼0

Xq
l¼0

Xq�l
a¼0

Cmbwmbðx; y; zÞ; m ¼ 1; 2; . . . ; 4; ð21Þ
in which
b ¼ qðqþ 1Þðqþ 2Þ
6

þ ðlþ 1Þð2q� lþ 2Þ
2

� a: ð22Þ
The function fmðx; y; zÞ is such that the nonhomogeneous boundary conditions associated with the dis-
placement field and electric potential are fulfilled. p is the order of polynomial, and Cmb are the unknown

coefficients. The functions wmb, m ¼ 1; 2; . . . ; 4 are taken as the product of general three-dimensional
polynomials and functions, uðBÞ

m ðx; y; zÞ which enforce satisfaction of the kinematical boundary conditions
and account for any symmetries present in the problem. Consideration of the symmetries leads to higher

accuracies and substantial improvement in the convergence rate. The functions wmbðx; y; zÞ are defined by
wmbðx; y; zÞ ¼ xq�l�ayazluðBÞ
m ðx; y; zÞ; m ¼ 1; 2; . . . ; 4; ð23Þ
with
uðBÞ
m ðx; y; zÞ ¼

Ynb
j¼1

½Cb
j ðx; y; zÞ�

Xbmj
Yns
k¼1

½Cskðx; y; zÞ�
Xsmk ; m ¼ 1; 2; . . . ; 4; ð24Þ
where ns is the number of plane of symmetries, Csk is the equation of the kth plane of symmetry, and
Xsm
k ¼ 0; if Um 6¼ 0; m ¼ 1; 2; . . . ; 4; on the kth plane of symmetry;

1; if Um ¼ 0; m ¼ 1; 2; . . . ; 4; on the kth plane of symmetry;

�
ð25Þ
nb is the number of boundaries, Cbj is the equation of the jth boundary. For Um, m ¼ 1; 2; . . . ; 4, Xbm
j is

defined by
Xbm
j ¼ 0; if Um 6¼ 0 on the jth boundary;

1; if Um ¼ 0 on the jth boundary:

�
ð26Þ
For smart multilayered piezoelectric composite plates consisting of k layers and associated generalized
displacement field Uk

mðx; y; zÞ, some of the field variables are discontinuous across the interfaces. The dis-
continuities in the derivatives of the generalized displacement field are incorporated in the solution by

letting
Uk
mðx; y; zÞ ¼ fmðx; y; zÞ þ

Xp
q¼0

Xq
l¼0

Xq�l
a¼0

Cmbwmbðx; y; zÞ þ
Xpk
q¼0

Xq
l¼0

Xq�l
a¼0

Ckmbw
k
mbðx; y; zÞ; m ¼ 1; 2; . . . ; 4;

ð27Þ
where the first two terms in the right hand side of Eq. (27) have been introduced in Eq. (21). The third term

consists of amending polynomials, wk
mbðx; y; zÞ of order Pk for layer k, with unknown coefficients Ckmb. The

amending polynomials are defined as
wkmbðx; y; zÞ ¼ ðxq�l�ayazlÞuðBÞk
m ðx; y; zÞ; m ¼ 1; 2; . . . ; 4: ð28Þ
It should be emphasized that the values of the amending polynomials must be equal to zero at the
interfaces,
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uðBÞk
m ðx; y; zÞ ¼ uðBÞ

m ðx; y; zÞ
Ynik
j¼1

½Cinj ðx; y; zÞ�; m ¼ 1; 2; . . . ; 4; ð29Þ
where b and uðBÞ
m are given by Eqs. (22) and (24) respectively, nik is the number of interfaces of the kth layer

with other layers, and Cinj is the equation of the surface of the jth associated interface. In this manner, the
generalized displacement field remains continuous across the interfaces, while its derivatives can have the

required discontinuities up to the desired orders. The unknown coefficients Cmb are computed by mini-

mization of the total energy functional
oF
oCmb

¼ 0: ð30Þ
4. Results and discussion

With the aid of the methodology developed in the previous section, three problems involving electro-

mechanical loadings, homogeneous and nonhomogeneous boundary conditions are examined. The avail-

ability of the exact solution to the selected example of Section 4.1 provides a benchmark for establishment

of the accuracy and robustness of the present analysis. As an interesting application of the current analysis

to plates with arbitrary geometries, in Section 4.2 a star shape plate under mechanical loading is considered.

For this example, the effects of the amending terms on the accuracy and convergence rate of the solutions

are illuminated. In the last example given in Section 4.3, a piezoelectric rod with rectangular cross-section
encased by a thick rectangular piezoelectric plate is solved under mechanical loading.
4.1. PZT––polymer composite plate

The piezoelectric composite plate considered here is a [0/90] cross-ply composed of an elastic layer in the

middle and two piezoelectric layers which are bonded to its upper and lower surfaces, as shown in Fig. 1.

The rectangular plate is simply supported along all its edges and has dimensions Lx, Ly and total thickness
of H . The thickness of the elastic layer and the piezoelectric layers are 0.8H and 0.1H , respectively. The
material properties of the elastic and PZT-4 layers, which are both orthotropic materials, are given in Table

1. The origin of the coordinate system is set at the center of the plate, the z-axis is perpendicular to the
layers and x and y axes are parallel to the main edges. The aspect ratio is assumed to be Lx=H ¼ Ly=H ¼ 4:0.
Note that, for the present problem H ¼ 1 m is used.
Fig. 1. Piezocomposite plate for the example given in Section 4.1.



Table 1

Electroelastic material properties

Property PZT-4 (Pb0:88Ca0:12)(CO0:5W0:5)0:04Ti0:96O3 Polymer

E1 (GPa) 81.3 127 132.38

E2 81.3 127 10.756

E3 64.5 119 10.756

m23 0.432 0.174 0.49

m13 0.432 0.174 0.24

m12 0.329 0.199 0.24

G23 (GPa) 25.6 53.5 3.606

G13 25.6 53.5 5.654

G12 30.6 53 5.654

e24 (C/m2) 12.72 2.96 0

e15 12.72 2.96 0

e31 )5.2 0.8 0

e32 )5.2 0.8 0

e33 15.08 6.88 0

e11=e0 1475 202 3.5

e22=e0 1475 202 3

e33=e0 1300 181 3
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4.1.1. Mechanical loading

In order to compare the results with the exact results reported in the literature, double sinusoidal loading

on the upper surface with an amplitude equal to one is assumed
tz ¼ cos
px
Lx
cos

py
Ly

: ð31Þ
The sides, top and bottom surfaces are fixed at zero potential. Under these conditions, the basic func-
tions are as follows:
uðBÞ
1 ¼ xð4y2 � L2yÞ; ð32Þ

uðBÞ
2 ¼ yð4x2 � L2xÞ; ð33Þ

uðBÞ
3 ¼ ð4x2 � L2xÞð4y2 � L2yÞ; ð34Þ

uðBÞ
4 ¼ ð4x2 � L2xÞð4y2 � L2yÞð4z2 � H 2Þ: ð35Þ
The following amending terms for the elastic layer are considered:
uðBÞpolymer
m ¼ uðBÞ

m ½z2 � ð0:4HÞ2�; m ¼ 1; 2; . . . ; 4: ð36Þ
For this example, the boundary conditions are homogeneous
fmðx; y; zÞ ¼ 0; m ¼ 1; 2; . . . ; 4; ð37Þ
where the values of these functions are equal to zero at the interfaces between the elastic and PZT-4 layers.

These functions satisfy the continuity conditions for the displacement fields and the electric potential

function. In solving this problem, amending terms have been incorporated. Variations of u, rx, rxy , and Dz
with thickness are obtained by the proposed method and are plotted along with the exact solutions
(Heyliger, 1994) in Figs. 2–5. Fig. 4 shows the discontinuity of shear stress rxy at the interface between
layers. Fig. 5 confirms that, the electric induction Dz must be continuous at the interface. Comparison of



Fig. 2. Distribution of the in plane displacement u along the z-axis, pertinent to the example of Section 4.1.1.

Fig. 4. Distribution of shear stress rxy along the z-axis, pertinent to the example of Section 4.1.1.

Fig. 3. Distribution of the normal stress rx along the z-axis, pertinent to the example of Section 4.1.1.

Fig. 5. Distribution of the electric induction Dz along the z-axis, pertinent to the example of Section 4.1.1.
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Table 2

In plane displacement, electric potential and normal stress in z-direction obtained for different points along the thickness of the plate,
pertinent to the example of Section 4.1.1

Z (m) u (10�11 m) U (10�3 V) rz (Pa)

Exact Current study Exact Current study Exact Current study

)0.5 4.9666 4.9663 0 0 0 0.0019

)0.475 4.4401 4.4397 2.224 2.1399 0.0034 0.002

)0.45 3.9246 3.9242 4.25 4.0523 0.0131 0.0127

)0.425 3.419 3.4187 6.02 5.7388 0.0284 0.023

)0.4 2.9218 2.9215 7.56 7.2028 0.0486 0.0537

)0.4 2.9218 2.9215 7.56 7.2028 0.0486 0.0084

)0.3 1.9141 1.9139 7.06 6.6754 0.1482 0.1326

)0.2 1.196 1.196 6.65 6.2373 0.2613 0.2625

)0.1 0.644 0.6443 6.34 5.8827 0.3804 0.3692

0 0.16 0.1603 6.11 5.6068 0.4983 0.5142

0.1 )0.346 )0.3463 5.96 5.4059 0.6168 0.623

0.2 )0.968 )0.968 5.89 5.2773 0.7374 0.7606

0.3 )1.816 )1.8156 5.89 5.2193 0.8519 0.8539

0.4 )3.0336 )3.0334 5.98 5.2311 0.9515 0.9171

0.4 )3.0336 )3.0334 5.98 5.2311 0.9515 0.9628

0.425 )3.5918 )3.5916 4.88 4.3028 0.9715 0.9713

0.45 )4.1593 )4.1589 3.58 3.1228 0.9868 0.9882

0.475 )4.7375 )4.7371 1.89 1.6897 0.9965 0.996

0.5 )5.3277 )5.3274 0 0 1 1.0018

Table 3

Electric induction, normal and shear stresses obtained for different points along the thickness of the plate, pertinent to the example of

Section 4.1.1

Z (m) Dz (10�13 C/m2) rx (Pa) rxy (Pa)

Exact Current study Exact Current study Exact Current study

)0.5 )142.46 )136.2228 )6.1498 )6.1483 2.4682 2.4678

)0.475 )132.4 )126.2617 )5.5096 )5.5098 2.2151 2.2151

)0.45 )103.66 )98.3297 )4.8781 )4.8776 1.9675 1.9671

)0.425 )58.352 )56.0148 )4.254 )4.2556 1.7246 1.7243

)0.4 1.4587 2.7818 )3.6366 )3.6327 1.4859 1.4857

)0.4 1.4587 1.5251 )3.1019 )3.1152 0.2745 0.2745

)0.3 1.1995 1.2792 )2.0028 )2.0062 0.204 0.204

)0.2 0.9563 1.0503 )1.2018 )1.1991 0.1494 0.1494

)0.1 0.7259 0.8354 )0.5718 )0.5747 0.1033 0.1033

0 0.5052 0.6317 )0.0102 )0.0068 0.0597 0.0597

0.1 0.2913 0.4364 0.5756 0.5726 0.0129 0.0129

0.2 0.0813 0.2471 1.2819 1.2845 )0.0431 )0.0431
0.3 )0.1276 0.0609 2.223 2.2192 )0.1151 )0.1151
0.4 )0.3382 )0.1244 3.5478 3.5335 )0.2117 )0.2117
0.4 )0.3382 )0.9048 3.6746 3.6794 )1.1458 )1.1456
0.425 66.568 57.8324 4.3677 4.3671 )1.4151 )1.4148
0.45 117.23 104.3737 5.0678 5.0691 )1.6886 )1.6883
0.475 149.35 133.2258 5.7762 5.7767 )1.9669 )1.9669
0.5 160.58 143.1816 6.4938 6.4955 )2.2508 )2.2504
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other results obtained by the present method with the exact solutions are displayed in Tables 2 and 3. This

problem is analyzed using ninth degree polynomials. The convergence rates for the displacement w and the



Table 4

Convergence rate for the vertical displacement and electric induction, pertinent to the example of Section 4.1.1

Order of polynomials w ðx ¼ 0; y ¼ 0; z ¼ H=2Þ (10�11 m) Dz ðx ¼ 0; y ¼ 0;Z ¼ H=2Þ (10�13 C/m2)
0 8.5535 )776.359
1 16.4294 )19971.359
2 18.2283 )1970.088
3 29.014 )351.38
4 29.0899 )179.1163
5 30.2991 )205.361
6 30.3167 )201.692
7 30.3922 )133.497
8 30.3922 )133.79
9 30.3951 )136.221
Exact solution 30.3962 )142.46

4846 H.M. Shodja, M.T. Kamali / International Journal of Solids and Structures 40 (2003) 4837–4858
electric induction Dz at point ð0; 0;H=2Þ are shown in Table 4. It is inferred that, the value of w converges to
the exact solutions faster than that of Dz, which is a function of derivatives of displacements and electric
potential. Therefore, one may conclude that, the values of displacements and electric potential converge to

the exact solutions faster than those for quantities like stresses and electric induction, which depend on the
derivatives of displacement and electric potential.

4.1.2. Electrical loading

For the sake of comparisons of the results with the exact results reported in literature, double sinusoidal

potential on the upper surface with an amplitude equal to one, and zero potential on the lower surface are

assumed. The electric loading is given by
U ¼ cos px
Lx
cos

py
Ly

at z ¼ H
2
; ð38Þ
and
U ¼ 0 at z ¼ �H
2

: ð39Þ
For this problem the boundary functions and the boundary functions associated with the amending

terms are the same as the ones given in the previous example. The nonhomogeneous boundary condition

dictates fmðx; y; zÞ to be defined as follows
fmðx; y; zÞ ¼ 0; m ¼ 1; 2; 3;

f4ðx; y; zÞ ¼
1

2

�
þ z
H

�
cos

px
Lx
cos

py
Ly

:
ð40Þ
In this example ninth degree amending terms and general polynomials are considered. Results showing the

variations of: electric potential U; normal stress rx; shear stresses rxy and rxz; and electric induction Dz, with
thickness along with the exact solutions (Heyliger, 1994) are plotted in Figs. 6–10. The results for other

quantities are compared with the exact solutions in Tables 5 and 6.

4.2. A star shape plate consisting of two piezoceramic layers

To demonstrate the applicability of the proposed analysis to plates of irregular shapes, the star shape

piezocomposite system under nonuniform loading is considered, Fig. 11. The equation of the boundary of
the plate in the polar coordinate system ðr; hÞ is



Fig. 6. Distribution of the electric potential along the z-axis, pertinent to the example of Section 4.1.2.

Fig. 7. Distribution of the normal stress rx along the z-axis, pertinent to the example of Section 4.1.2.

Fig. 8. Distribution of the shear stress rxy along the z-axis, pertinent to the example of Section 4.1.2.

Fig. 9. Distribution of the shear stress rxz along the z-axis, pertinent to the example of Section 4.1.2.
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Fig. 10. Distribution of the electric induction Dz along the z-axis, pertinent to the example of Section 4.1.2.

Table 5

Electric potential and displacements obtained for different points along the thickness of the plate, pertinent to the example of Section

4.1.2

Z (m) U (V) w (10�12 m) u (10�12 m)

Exact Current study Exact Current study Exact Current study

)0.5 0 0 )13.31 )13.654 )2.463 )2.786
)0.475 )0.0004 )0.00003 )13.337 )13.695 )2.222 )2.519
)0.45 )0.0008 )0.00003 )13.36 )13.733 )1.985 )2.257
)0.425 )0.0009 )0.00002 )13.377 )13.759 )1.751 )1.999
)0.4 )0.001 0.00001 )13.39 )13.78 )1.52 )1.743
)0.4 )0.001 0.00001 )13.39 )13.78 )1.52 )1.743
)0.3 0.1081 0.10829 )13.402 )13.797 )0.923 )1.062
)0.2 0.2179 0.21802 )13.385 )13.761 )0.454 )0.53
)0.1 0.3305 0.33066 )13.343 )13.732 )0.034 )0.055
0 0.4476 0.44773 )13.271 )13.663 0.409 0.439

0.1 0.5705 0.57077 )13.158 )13.534 0.949 1.036

0.2 0.7014 0.70146 )12.987 )13.375 1.676 1.838

0.3 0.8415 0.84155 )12.729 )13.12 2.707 2.977

0.4 0.9929 0.99289 )12.346 )12.723 4.205 4.626

0.4 0.9929 0.99289 )12.346 )12.723 4.205 4.626

0.425 0.9936 0.99363 )12.431 )12.756 )5.193 )4.752
0.45 0.995 0.99507 )12.868 )13.115 )14.593 )14.132
0.475 0.9971 0.99719 )13.658 )13.801 )24.014 )23.533
0.5 1 1 )14.802 )14.821 )33.474 )32.974
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rð1þ 0:1 cos 6hÞ � 3 ¼ 0: ð41Þ

The plate consists of two piezoceramic layers of equal thicknesses, namely PZT-4 and

(Pb0:88Ca0:12)((Co0:5W0:5)0:04Ti0:96)O3 whose material properties are displayed in Table 1. The origin of the

coordinate system is set at the centroid of the plate. The plate is simply supported and has a total thickness
of H ¼ 1 m.

4.2.1. Mechanical loading

Suppose that the applied mechanical loading on the upper face of the plate is of the form
tz ¼ sin
p
6
3½ � rð1þ 0:1 cos 6hÞ�; on z ¼ H

2
: ð42Þ
Let u, v, and w be the displacements in the x-, y-, and z-directions, respectively. For this problem, the
appropriate boundary functions corresponding to the displacements u, v, w, and electric potential function
U are



Fig. 11. Star shape piezocomposite plate for the example given in Section 4.2.

Table 6

Stresses and electric induction obtained for different points along the thickness of the plate, pertinent to the example of Section 4.1.2

Z (m) rx (10�2 Pa) rxy (10�2 Pa) rxz (10�2 Pa) Dz (10�13 C/m2)

Exact Current

study

Exact Current

study

Exact Current

study

Exact Current

study

)0.5 21.998 24.153 )11.276 )8.622 0 1.218 )9.7 )255.1
)0.475 19.072 18.46 )9.944 )7.244 )5.245 )4.72 )9.9 )280.7
)0.45 16.173 15.119 )8.635 )5.726 )9.693 )10.057 )10.7 )300.1
)0.425 13.295 12.005 )7.346 )4.232 )13.349 )13.804 )11.7 )312.4
)0.4 10.435 8.433 )6.073 )2.861 )16.219 )17.025 )13.1 )322.6
)0.4 15.713 18.175 )1.122 )0.526 )16.219 )16.701 )13.1 )286.9
)0.3 9.243 10.732 )0.584 0.128 )25.983 )27.945 )16.3 )288.9
)0.2 4.082 4.962 )0.057 0.727 )30.786 )33.35 )28.1 )294.7
)0.1 )0.581 )0.551 0.523 1.426 )31.346 )34.29 )54.6 )304.4
0 )5.482 )5.919 1.229 2.001 )27.741 )30.676 )109.8 )318.2
0.1 )11.397 )12.345 2.21 2.856 )19.429 )21.633 )222.6 )336.2
0.2 )19.249 )21.261 3.325 3.615 )5.167 )5.914 )452.2 )358.8
0.3 )30.247 )33.263 4.663 5.134 17.163 18.607 )919.2 )386.2
0.4 )46.061 )50.754 6.337 5.646 50.86 55.71 )1868.6 )418.7
0.4 )90.305 )81.047 34.295 30.588 50.86 55.754 )1868.6 )431.3
0.425 )41.864 )32.384 )10.698 )8.636 65.738 69.359 )7788.2 )6355.1
0.45 6.538 15.927 )55.693 )53.681 62.233 64.59 )13714 )12283.3
0.475 55 64.126 )100.77 )99.077 40.337 41.44 )19654 )18203.2
0.5 103.622 108.898 )146.03 )143.082 0 )0.515 )25616 )24173.9
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uðBÞ
1 ¼ x; ð43Þ

uðBÞ
2 ¼ y; ð44Þ

uðBÞ
3 ¼ ½rð1þ 0:1 cos 6hÞ�2 � 9; ð45Þ



Fig. 12
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uðBÞ
4 ¼ ð4z2 � H 2Þf½rð1þ 0:1 cos 6hÞ�2 � 9g; ð46Þ
respectively. For this problem the kinematical boundary conditions are homogeneous
fmðx; y; zÞ ¼ 0; m ¼ 1; 2; . . . ; 4: ð47Þ
Incorporation of the discontinuities in the derivatives of displacement fields and electric potential

function through the amending terms results in considerable improvement of the accuracy and convergence

rate. The amending terms associated with the layer made up of PZT-4 may be written as
uðBÞPZT-4
m ¼ uðBÞ

m z; m ¼ 1; 2; . . . ; 4; ð48Þ
where the superscript PZT-4 corresponds to the material properties of the layer. To establish the effects of

the amending terms, the results on the variations of: electric potential U; shear stress rxz; and electric in-
duction Dz through the thickness of the plate are computed with and without the amending terms and the
results are compared, Figs. 12–14. In Fig. 13, the value of rxz is being plotted through the thickness at point
A (x ¼ �2:7; y ¼ 0), whereas the values of Dz and U shown in Figs. 12 and 14, respectively correspond to the
center of the plate. The variation of the displacement w on y ¼ 0 and z ¼ H=2, along the x-direction is
shown in Fig. 15. It is seen that, while the effects of the amending terms on the electric potential and on the

vertical displacement are negligible, their influences on the stress rxz and the electric induction Dz are great.
When the amending terms are included, the continuities of rxz and Dz at the interface, z ¼ 0 are correctly
computed. Exclusion of the amending terms yielded dramatic discontinuities at the interface, z ¼ 0.
Although consideration of the amending terms has very little effects on the displacement field and the
. Distribution of the electric potential through the thickness at the center of the plate, pertinent to the example of Section 4.2.1.

Fig. 13. Distribution of the shear stress rxz through the thickness at point A, pertinent to the example of Section 4.2.1.



Fig. 14. Distribution of the electric induction Dz through the thickness at the center of the plate, pertinent to the example of Section
4.2.1.

Fig. 15. Distribution of the displacement w along the x-axis at y ¼ 0 and z ¼ H=2, pertinent to the example of Section 4.2.1.
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electric potential, but their roles in computations of quantities like stress fields and electric induction, which

depend on the derivatives of the displacements and electric potential are quite important. Fig. 16 displays

the variation of the displacement u through the thickness of the plate at point A. The distributions of the
displacement w, normal stresses rx and rz corresponding to the center of the plate are shown in Figs. 17–19,
respectively. Note that, rz attains, with high precision, the values of 0 and 1 on the lower and upper surface
Fig. 16. Distribution of the in plane displacement u through the thickness at point A, pertinent to the example of Section 4.2.1.



Fig. 17. Distribution of the displacement w through the thickness at the center of the plate, pertinent to the example of Section 4.2.1.

Fig. 18. Distribution of the normal stress rx through the thickness at the center of the plate, pertinent to the example of Section 4.2.1.

Fig. 19. Distribution of the normal stress rz through the thickness at the center of the plate, pertinent to the example of Section 4.2.1.
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of the plate, respectively. Moreover, the continuity of rz at the interface between the two layers is accurately
captured. In this subsection the calculations are carried out using 15th degree polynomials.
4.3. Perforated piezocomposite plate

As an interesting example, consider the piezocomposite system shown in Fig. 20, where a piezoelectric
rod of rectangular cross-section is placed into a perforated thick plate whose piezoelectric properties are



Fig. 20. Perforated piezocomposite plate for the example given in Section 4.3.

Fig. 21. Distribution of the electric potential in the y–z plane, for the example of Section 4.3.1.

Fig. 22. Distribution of the displacement in x-direction in the y–z plane, for the example of Section 4.3.1.
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different from those for the rod. The material properties for each domain are given in Table 1. The

dimensions of the plate are H ¼ 1 m, Lx ¼ Ly ¼ 2 m and the dimensions of the rod are Hx ¼ 2 m, Hy ¼ 1 m,
Hz ¼ 0:5 m. The plate is simply supported. The origin of the Cartesian coordinates is located at the centroid
of the piezocomposite system.

4.3.1. Mechanical loading

The upper face of the piezocomposite system is subjected to the following normal traction
tz ¼ cos
px
Lx
cos

py
Ly

: ð49Þ
The electric potential on all faces are set equal to zero. For the example considered in this section, the

displacement and the electric potential boundary functions are the same as the ones presented for the

example studied in Section 4.1. In view of having homogeneous boundary conditions,
Fig. 23. Distribution of the displacement in z-direction in the y–z plane, for the example of Section 4.3.1.

Fig. 24. Distribution of the normal stress rx in the y–z plane, for the example of Section 4.3.1.
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fmðx; y; zÞ ¼ 0; m ¼ 1; 2; . . . ; 4; ð50Þ

and the boundary functions for the rod may be written as
uðBÞrod
m ¼ uðBÞ

m bð4y2 � H 2
y Þð4z2 � H 2

z Þc; m ¼ 1; 2; 3; 4: ð51Þ
Fifteenth degree amending terms and general polynomials for the displacements and electric potential

are employed. Figs. 21–30 show the distribution of: electric potential U; displacements u and w; stresses rx,
ry , rz, rxy , rxz, ryz; and electric induction Dz in the y–z plane. It is observed that the presence of the
piezoelectric rod of rectangular cross-section remarkably disturbs the electromechanical field.
Fig. 25. Distribution of the normal stress ry in the y–z plane, for the example of Section 4.3.1.

Fig. 26. Distribution of the normal stress rz in the y–z plane, for the example of Section 4.3.1.



Fig. 27. Distribution of the shear stress rxy in the y–z plane, for the example of Section 4.3.1.

Fig. 29. Distribution of the shear stress ryz in the y–z plane, for the example of Section 4.3.1.

Fig. 28. Distribution of the shear stress rxz in the y–z plane, for the example of Section 4.3.1.
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Fig. 30. Distribution of the electric induction Dz in the y–z plane, for the example of Section 4.3.1.
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5. Conclusion

A rational three-dimensional treatment of piezocomposite plates with arbitrary geometry and boundary

conditions subjected to electromechanical loadings is given. Continuity of the generalized displacements

and tractions across the interfaces are enforced through introduction of the amending terms. If the

derivatives of the generalized displacements are discontinuous across any interface, it is seen that exclusion

of the amending terms for the associated quantities may lead to unrealistic results at that interface. In-

corporation of the amending terms has a remarkable role in improvement of the accuracy and convergence

rate. Another key feature of the proposed method is the relative ease in modeling nonhomogeneous
kinematical boundary conditions, such as applying electric potential. In addition to the multilayer piezo-

composites, the present method can easily handle piezocomposites containing inhomogeneities of various

geometries.
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