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Abstract

In this paper, an accurate series solution in conjunction with an energy formulation for the treatment of piezo-
composite plates with arbitrary geometry and aspect ratio, under both electrical and mechanical loadings are proposed.
A remedy for dealing with nonhomogeneous boundary conditions is also presented. Through introduction of amending
polynomials of order p, for the kth layer, the accuracy and convergence rate are dramatically improved. These poly-
nomials ensure continuity of the generalized displacement fields across the interfaces, while their derivatives can have
the required discontinuities up to a desired order. Moreover, depending on the nature of the physical problem under
consideration, incorporation of the appropriate functions result in greater convergence rate and precision of the
solution.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The statical and dynamical applications of piezoelectric materials have a critical role in recent advances
and developments of “smart structures” and ‘“‘smart materials”. Piezoelectrics polarize under applied
stresses (direct effect) and deform when subjected to an electric field (converse effect). The desirability of
integration of piezoelectric sensors with “smart structural systems’ is due to their instrumental direct effect
for strain measurements. On the other hand, the converse effect of the piezoelectric actuators is imple-
mented for controlling vibrations and elastic deformations of such structures. The early applications were
related to control of vibrations of mirrors when subjected to sound vibrations (Forward, 1979). Realizing
that local measurements and actuations are not the best means for controlling the continuous behavior of
structures, the piezoelectric sensors and actuators are integrated continuously with the structural systems.
In this manner, the piezoelectric sensor is able to detect the location and type of cracks that occur in the
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system. The piezoelectric devices experience stresses and deformation during their service life, therefore the
need for reliability and optimum performance of such devices require investigations of their electrome-
chanical behaviors.

Tiersten (1969) formulated the governing equations for the vibration of piezoelectric plates and inves-
tigated their fundamental electro-mechanical behavior. Two- and three-dimensional analysis of simply
supported piezoelectric plates have been addressed by several investigators; see, for example, Ray et al.
(1992), Heyliger and Brooks (1996), Ruan et al. (1999) for two-dimensional analysis, and Ray et al. (1993),
Heyliger (1994), Bisegna and Maceri (1996), and Reddy and Cheng (2001) for three-dimensional analysis.
In several of the above mentioned reports, some simplifications have been made. For example, Ray et al.
(1993), presume that the three-three component of the piezoelectric tensor equal to zero, i.e. e33 = 0. As a
result the continuities of normal electric induction field and electric potential at the interface between the
layers are not satisfied. Ruan et al. (1999), have used an approximation for the distribution of electric
potential through the thickness of the plate. Most of the reports in the literature are tailored for the
treatments of simply supported rectangular piezoelectric plates. Henceforth, a unified approach which can
accurately handle piezocomposite plates of arbitrary geometries consisting of layers with arbitrary thick-
ness, and various types of boundary conditions is in order.

In the literature, most of the available exact closed-form solutions, are limited to simple geometries
under simple applied loadings and boundary conditions. Whereas, the current investigation develops a
general theory based on three-dimensional elasticity, without the need for any simplifying assumptions. The
remarkable accuracy and robustness of the proposed approach are established by reconsideration of the
problem examined by Heyliger (1994), a special case for which the exact closed-form solution exists. For
demonstration of the generality and applicability of the present theory to complex irregular geometries, the
solution to star-shaped piezocomposite plate is given. As another interesting application, the problem of
perforated piezocomposite plate is addressed. The exact solutions for the star-shaped and the perforated
plates mentioned above do not exist, moreover, due to the presence of sharp corners, interfaces, and ir-
regularity in the geometry, its treatment by the existing numerical techniques such as finite element method
would be a very difficult task.

2. Governing equations of piezoelectricity

The electromechanical behavior of piezoelectric materials is a coupled phenomenon. For linear piezo-
electric medium, the stress o, strain s, electric field E, and electric induction D are related through the
constitutive equations

O-ij = ijk/skl - ekijEk7 iaj7k7 l = 172737 (la)

D; = epsp + kyE;, i, j,k=1,2,3. (1b)
Employing the abridge notations (ij) — i, and (kI) — j Egs. (1a) and (1b) may equivalently be rewritten as

O'l':C[ij_ek,'Ek, i,j:l,Z,...,6 and k:1,2,3, (2&)

D[:e,'kSk"—kl'jEj, i,j:1,2,3 and k:1,2,...,6, (Zb)
where

{61 02 03 04 05 osy={0on 0n 03 01 o135 on}, (3a)

{s1 s2 s3 sS4 S5 Se}={su sn S 2553 28135 2512} (3b)
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The abridged components of the elastic moduli C in Eq. (2a) comply with the relations (3a) and (3b).
e and k are the piezoelectric and dielectric tensors, respectively. For a displacement field u and electric
potential function ¢ we have

s,-j—%@—zjtgg), i,j=1223, (4a)

E[:fg—j:, i=1,2,3. (4b)
In the SI system, the dimensions of the variables introduced above are as follows

sl=[], [6J=Nm™? [E=Vm'=NC"

D]=Cm?=NV'm"', [CJ=Nm> (5)

] =Nm'V'=Cm? [K=CN'm?>=NV? [¢=V.

In the absence of body forces and charges, the equilibrium equations and charge equation of electro-
statics become

0, =0, (6a)
D,; = 0. (6b)
For convenience the following notations are introduced
Con, 1<m,n<6,
Pu=fe 1imss 15nss 0

—kg, T<m<9, T<n<9,
where P,, is referred to as generalized modulus,
g=m—6, (8a)
h=n-—6. (8b)

Similarly the generalized displacement U,,, generalized stress 2, generalized strain S,,, and generalized
traction 7,,, are defined by

{2 .
w={5 N5 o
s:={"%, 15n55 >
{2 o9

In view of the above arguments, the generalized strain is written as

Sm :Lanm (10)



4840 H.M. Shodja, M.T. Kamali | International Journal of Solids and Structures 40 (2003 ) 48374858

where

e o 0 T

& 0 0 O = 0 0 O

0 ag 0 % 0 % 0 0 0

L= ’ o 3 8 (1)
06 0 — — — 0 0 0 O
0z 0y Ox

o 0 0

_O 0 0 0 0 o0 > 3 ol

Accordingly, Egs. (2) and (6) are cast into the following generalized constitutive and generalized equi-
librium equations

2y = P, (12)

LpZ,=0, m=12...,9 n=12...,4 (13)
Combining Egs. (10), (12) and (13) we obtain

AU, =0, (14)

where 4,,, is the generalized equilibrium coefficient operator

Amn = LimIDiijn' (15)

The boundary conditions are expressed in the following manner
— Tm(Un) - Tm _ —
B,nnUn{ U T, }0, mn=12...,4, (16)

in which B,, is the generalized boundary condition operator, n; is the direction cosine, and T, is the

prescribed generalized traction on the generalized traction boundary, I's. U, is the prescribed generalized
displacement vector on the generalized displacement boundary, I'y.
The stored energy density W of a piezoelectric medium is given by:

W =1(S:P;S;), (17)
which can be written as
W:%(O'is,-—Eka) :%(Cijsisj_2ekjEij_kk1EkEl)a l,j: 1,2,...,6 and k,l: 1,2,3. (18)

The total energy functional, F of the system is
F:/WdQ—/ T,U,dI', m=1,2,...,4. (19)
Q I's

Using the weighted residual Galerkin method and selecting dU,, as weight functions, the following
variational relation holds

5F = 0. (20)

3. A rational three-dimensional solution of the field equation

A versatile solution of Eq. (14) subjected to the boundary conditions (16) is sought. The proposed so-
lution is obtained by the superposition of a special function which accommodates nonhomogencous
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kinematical boundary conditions and a series suitable for treating thick plates with arbitrary geometries.
To this end the generalized displacement fields are expressed in the following form

—1

P q
Um(X,% ) f;nxyv +ZZ Cm/ilpm/}xy’ ) m:1727~~~a4a (21)

qg=0 [=0 «

£~

Il
=}

in which

glg+Dg+2) (+DQq—-1+2)
6 2

The function f,,(x,y,z) is such that the nonhomogeneous boundary conditions associated with the dis-
placement field and electric potential are fulfilled. p is the order of polynomial, and C,,s are the unknown
coefficients. The functions ,,,, m =1,2,...,4 are taken as the product of general three-dimensional
polynomials and functions, ¢¥)(x, y,z) which enforce satisfaction of the kinematical boundary conditions
and account for any symmetries present in the problem. Consideration of the symmetries leads to higher
accuracies and substantial improvement in the convergence rate. The functions ,,,(x, y,z) are defined by

p= (22)

lpm[i(xvyvz) :xq—l—zxymzl(p’(nB)(x7y,Z)’ m = 1,2,...,4, (23)
with
nb o ns o
o (x,p,2) = [0, 0, 21" [y, 2%, m=1,2,....4, (24)
j=1 k=1

where ns is the number of plane of symmetries, I'; is the equation of the kth plane of symmetry, and

o — {0, if U,#0, m=1,2,...,4, on the kth plane of symmetry,

1, ifU,=0, m=1,2,...,4,  on the kth plane of symmetry, (25)

nb i1s the number of boundaries, I’ j’ is the equation of the jth boundary. For U,, m =1,2,...,4, Qj”” is
defined by

o _ {0, if U,, # 0 on the jth boundary,

1, if U, =0 on the jth boundary. (26)

For smart multilayered piezoelectric composite plates consisting of k layers and associated generalized
displacement field U¥(x,y,z), some of the field variables are discontinuous across the interfaces. The dis-
continuities in the derivatives of the generalized displacement field are incorporated in the solution by
letting

—1 Pk —1

P q q
Ub.2,2) = fule,3,2) 3 ) Cupthpea 0, 2) + D Chling(xy,2), m=1,2,....4,

=0 =0 « q=0 =0 «

<
=

Il
=}
Il
=3

(27)

where the first two terms in the right hand side of Eq. (27) have been introduced in Eq. (21). The third term
consists of amending polynomials, W;ﬂ(x, v,z) of order P, for layer k, with unknown coefficients C mﬂ The
amending polynomials are defined as

lkl;ﬁ(x,y,z) = (xq—l—ayazl)gog)k(x,y72)7 m=12...4 (28)

It should be emphasized that the values of the amending polynomials must be equal to zero at the
interfaces,
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ni

P (x,3,2) = oW (k.3 2) [ [T (e, 3,2)), m=1,2,....4, (29)

J=1

where  and ¢&) are given by Eqgs. (22) and (24) respectively, ni* is the number of interfaces of the kth layer
with other layers, and I’ i/.n is the equation of the surface of the jth associated interface. In this manner, the
generalized displacement field remains continuous across the interfaces, while its derivatives can have the
required discontinuities up to the desired orders. The unknown coefficients C,; are computed by mini-
mization of the total energy functional

oF

—=0. 30
0C,p (30)

4. Results and discussion

With the aid of the methodology developed in the previous section, three problems involving electro-
mechanical loadings, homogeneous and nonhomogeneous boundary conditions are examined. The avail-
ability of the exact solution to the selected example of Section 4.1 provides a benchmark for establishment
of the accuracy and robustness of the present analysis. As an interesting application of the current analysis
to plates with arbitrary geometries, in Section 4.2 a star shape plate under mechanical loading is considered.
For this example, the effects of the amending terms on the accuracy and convergence rate of the solutions
are illuminated. In the last example given in Section 4.3, a piezoelectric rod with rectangular cross-section
encased by a thick rectangular piezoelectric plate is solved under mechanical loading.

4.1. PZT—polymer composite plate

The piezoelectric composite plate considered here is a [0/90] cross-ply composed of an elastic layer in the
middle and two piezoelectric layers which are bonded to its upper and lower surfaces, as shown in Fig. 1.
The rectangular plate is simply supported along all its edges and has dimensions L., L, and total thickness
of H. The thickness of the elastic layer and the piezoelectric layers are 0.8H and 0.1H, respectively. The
material properties of the elastic and PZT-4 layers, which are both orthotropic materials, are given in Table
1. The origin of the coordinate system is set at the center of the plate, the z-axis is perpendicular to the
layers and x and y axes are parallel to the main edges. The aspect ratio is assumed to be L,/H = L,/H = 4.0.
Note that, for the present problem H = 1 m is used.

01H

08H

01H

Fig. 1. Piezocomposite plate for the example given in Section 4.1.
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Table 1
Electroelastic material properties
Property PZT-4 (Pby.s3Ca.12)(COg.5Wo.5)0.04 Ti0.06 O3 Polymer
El (GPa) 81.3 127 132.38
E2 81.3 127 10.756
E3 64.5 119 10.756
V23 0.432 0.174 0.49
Vi3 0.432 0.174 0.24
V2 0.329 0.199 0.24
G»; (GPa) 25.6 53.5 3.606
Gz 25.6 53.5 5.654
Gy 30.6 53 5.654
ey (C/m?) 12.72 2.96 0
ers 12.72 2.96 0
€3] -5.2 0.8 0
€3 -5.2 0.8 0
ey 15.08 6.88 0
&1/ 1475 202 3.5
€2/ €0 1475 202 3
833/80 1300 181 3

4.1.1. Mechanical loading
In order to compare the results with the exact results reported in the literature, double sinusoidal loading
on the upper surface with an amplitude equal to one is assumed

X Ty
f, = COS— COS—.

L, L

y

(31)

The sides, top and bottom surfaces are fixed at zero potential. Under these conditions, the basic func-

tions are as follows:

0" =x(4y — L)),

0y = y(4x> — L),

o) = (4> — L2)(4y* — L),

o)) = (4 — L2)(4* — L2) (42 — H?).

The following amending terms for the elastic layer are considered:

(B)polymer

o (B)

:(pm

[ — (0.4H)7,

m=1,2,...,4.

For this example, the boundary conditions are homogeneous

fm(X,%Z) =0,

m=1,2,....4,

(32)
(33)
(34)

(35)

(36)

(37)

where the values of these functions are equal to zero at the interfaces between the elastic and PZT-4 layers.
These functions satisfy the continuity conditions for the displacement fields and the electric potential
function. In solving this problem, amending terms have been incorporated. Variations of u, gy, o5, and D,
with thickness are obtained by the proposed method and are plotted along with the exact solutions
(Heyliger, 1994) in Figs. 2-5. Fig. 4 shows the discontinuity of shear stress o,, at the interface between
layers. Fig. 5 confirms that, the electric induction D, must be continuous at the interface. Comparison of
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Fig. 2. Distribution of the in plane displacement u along the z-axis, pertinent to the example of Section 4.1.1.
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Fig. 3. Distribution of the normal stress o, along the z-axis, pertinent to the example of Section 4.1.1.
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Fig. 4. Distribution of shear stress o,, along the z-axis, pertinent to the example of Section 4.1.1.
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Fig. 5. Distribution of the electric induction D, along the z-axis, pertinent to the example of Section 4.1.1.
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Table 2
In plane displacement, electric potential and normal stress in z-direction obtained for different points along the thickness of the plate,
pertinent to the example of Section 4.1.1

Z (m) u (107" m) & (1073 V) a. (Pa)
Exact Current study Exact Current study Exact Current study
-0.5 4.9666 4.9663 0 0 0 0.0019
—-0.475 4.4401 4.4397 2.224 2.1399 0.0034 0.002
—-0.45 3.9246 3.9242 4.25 4.0523 0.0131 0.0127
—-0.425 3.419 3.4187 6.02 5.7388 0.0284 0.023
-0.4 2.9218 29215 7.56 7.2028 0.0486 0.0537
-0.4 2.9218 2.9215 7.56 7.2028 0.0486 0.0084
—-0.3 1.9141 1.9139 7.06 6.6754 0.1482 0.1326
-0.2 1.196 1.196 6.65 6.2373 0.2613 0.2625
—-0.1 0.644 0.6443 6.34 5.8827 0.3804 0.3692
0 0.16 0.1603 6.11 5.6068 0.4983 0.5142
0.1 —-0.346 —0.3463 5.96 5.4059 0.6168 0.623
0.2 —-0.968 —-0.968 5.89 5.2773 0.7374 0.7606
0.3 -1.816 —-1.8156 5.89 5.2193 0.8519 0.8539
0.4 -3.0336 -3.0334 5.98 5.2311 0.9515 0.9171
0.4 -3.0336 -3.0334 5.98 5.2311 0.9515 0.9628
0.425 -3.5918 -3.5916 4.88 4.3028 0.9715 0.9713
0.45 -4.1593 —4.1589 3.58 3.1228 0.9868 0.9882
0.475 —4.7375 —4.7371 1.89 1.6897 0.9965 0.996
0.5 -5.3277 -5.3274 0 0 1 1.0018
Table 3

Electric induction, normal and shear stresses obtained for different points along the thickness of the plate, pertinent to the example of
Section 4.1.1

Z (m) D. (107" C/m?) o, (Pa) oy, (Pa)
Exact Current study Exact Current study Exact Current study

-0.5 —142.46 —136.2228 —6.1498 —6.1483 2.4682 2.4678
—-0.475 -132.4 —126.2617 —5.5096 —5.5098 2.2151 2.2151
—-0.45 —-103.66 —-98.3297 —-4.8781 —4.8776 1.9675 1.9671
—-0.425 —58.352 -56.0148 —4.254 —4.2556 1.7246 1.7243
-0.4 1.4587 2.7818 -3.6366 -3.6327 1.4859 1.4857
-0.4 1.4587 1.5251 -3.1019 -3.1152 0.2745 0.2745
-0.3 1.1995 1.2792 —2.0028 —-2.0062 0.204 0.204
-0.2 0.9563 1.0503 —-1.2018 —-1.1991 0.1494 0.1494
-0.1 0.7259 0.8354 —0.5718 -0.5747 0.1033 0.1033
0 0.5052 0.6317 —-0.0102 —0.0068 0.0597 0.0597
0.1 0.2913 0.4364 0.5756 0.5726 0.0129 0.0129
0.2 0.0813 0.2471 1.2819 1.2845 —-0.0431 —-0.0431
0.3 -0.1276 0.0609 2.223 2.2192 -0.1151 -0.1151
0.4 —0.3382 —0.1244 3.5478 3.5335 -0.2117 -0.2117
0.4 —-0.3382 —-0.9048 3.6746 3.6794 —1.1458 —1.1456
0.425 66.568 57.8324 4.3677 4.3671 —-1.4151 —1.4148
0.45 117.23 104.3737 5.0678 5.0691 —1.6886 —1.6883
0.475 149.35 133.2258 5.7762 5.7767 —1.9669 —1.9669
0.5 160.58 143.1816 6.4938 6.4955 -2.2508 -2.2504

other results obtained by the present method with the exact solutions are displayed in Tables 2 and 3. This
problem is analyzed using ninth degree polynomials. The convergence rates for the displacement w and the
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Table 4
Convergence rate for the vertical displacement and electric induction, pertinent to the example of Section 4.1.1
Order of polynomials w(x=0,y=0,z=H/2) (107" m) D. (x=0,y=0,Z=H/2) (1013 C/m?)
0 8.5535 —-776.359
1 16.4294 —-19971.359
2 18.2283 —1970.088
3 29.014 —-351.38
4 29.0899 —-179.1163
5 30.2991 —-205.361
6 30.3167 —-201.692
7 30.3922 —-133.497
8 30.3922 —-133.79
9 30.3951 —-136.221
Exact solution 30.3962 —-142.46

electric induction D, at point (0,0, //2) are shown in Table 4. It is inferred that, the value of w converges to
the exact solutions faster than that of D,, which is a function of derivatives of displacements and electric
potential. Therefore, one may conclude that, the values of displacements and electric potential converge to
the exact solutions faster than those for quantities like stresses and electric induction, which depend on the
derivatives of displacement and electric potential.

4.1.2. Electrical loading

For the sake of comparisons of the results with the exact results reported in literature, double sinusoidal
potential on the upper surface with an amplitude equal to one, and zero potential on the lower surface are
assumed. The electric loading is given by

H
® = cos = cos 2 atz=—, (38)
X 'y 2
and
—-H

For this problem the boundary functions and the boundary functions associated with the amending
terms are the same as the ones given in the previous example. The nonhomogeneous boundary condition
dictates f,,(x,y,z) to be defined as follows

f‘m(xvyvz):()a m:172737

1 =z X Ty (40)
==+~ ) cos— cos—.
falx,»,2) <2+H) L 1,
In this example ninth degree amending terms and general polynomials are considered. Results showing the
variations of: electric potential @; normal stress o,; shear stresses o, and o,.; and electric induction D,, with
thickness along with the exact solutions (Heyliger, 1994) are plotted in Figs. 6-10. The results for other
quantities are compared with the exact solutions in Tables 5 and 6.

4.2. A star shape plate consisting of two piezoceramic layers
To demonstrate the applicability of the proposed analysis to plates of irregular shapes, the star shape

piezocomposite system under nonuniform loading is considered, Fig. 11. The equation of the boundary of
the plate in the polar coordinate system (r, 6) is
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Fig. 6. Distribution of the electric potential along the z-axis, pertinent to the example of Section 4.1.2.
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Fig. 7. Distribution of the normal stress o, along the z-axis, pertinent to the example of Section 4.1.2.
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Fig. 8. Distribution of the shear stress o, along the z-axis, pertinent to the example of Section 4.1.2.
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Fig. 9. Distribution of the shear stress g,, along the z-axis, pertinent to the example of Section 4.1.2.
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Fig. 10. Distribution of the electric induction D, along the z-axis, pertinent to the example of Section 4.1.2.
Table 5

Electric potential and displacements obtained for different points along the thickness of the plate, pertinent to the example of Section
4.1.2

Z (m) @ (V) w (10712 m) u (10712 m)
Exact Current study Exact Current study Exact Current study
-0.5 0 0 -13.31 —13.654 —2.463 —-2.786
—-0.475 —0.0004 —-0.00003 —-13.337 —13.695 -2.222 -2.519
—-0.45 —0.0008 —0.00003 —-13.36 —13.733 —-1.985 —2.257
—-0.425 —0.0009 —-0.00002 -13.377 —-13.759 -1.751 -1.999
-0.4 —-0.001 0.00001 -13.39 -13.78 -1.52 —-1.743
-0.4 —-0.001 0.00001 -13.39 -13.78 -1.52 —-1.743
-0.3 0.1081 0.10829 —-13.402 —-13.797 —0.923 —-1.062
-0.2 0.2179 0.21802 —-13.385 -13.761 —-0.454 —-0.53
—-0.1 0.3305 0.33066 —-13.343 —13.732 —0.034 —0.055
0 0.4476 0.44773 —-13.271 —-13.663 0.409 0.439
0.1 0.5705 0.57077 —13.158 —13.534 0.949 1.036
0.2 0.7014 0.70146 —12.987 —-13.375 1.676 1.838
0.3 0.8415 0.84155 —12.729 -13.12 2.707 2.977
0.4 0.9929 0.99289 —-12.346 —-12.723 4.205 4.626
0.4 0.9929 0.99289 —12.346 -12.723 4.205 4.626
0.425 0.9936 0.99363 —-12.431 —-12.756 -5.193 —4.752
0.45 0.995 0.99507 —12.868 -13.115 —-14.593 -14.132
0.475 0.9971 0.99719 —13.658 —-13.801 -24.014 —23.533
0.5 1 1 —14.802 —-14.821 -33.474 -32.974
(1 +0.1cos60) — 3 = 0. (41)

The plate consists of two piezoceramic layers of equal thicknesses, namely PZT-4 and
(PbygsCag.12)((CogsWo.5)0.04Tig.06)O3 whose material properties are displayed in Table 1. The origin of the
coordinate system is set at the centroid of the plate. The plate is simply supported and has a total thickness
of H=1m.

4.2.1. Mechanical loading
Suppose that the applied mechanical loading on the upper face of the plate is of the form
. H
tZ:smgB—r(l+0.lcos69)], onz=-. (42)
Let u, v, and w be the displacements in the x-, y-, and z-directions, respectively. For this problem, the
appropriate boundary functions corresponding to the displacements u, v, w, and electric potential function
d are
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Stresses and electric induction obtained for different points along the thickness of the plate, pertinent to the example of Section 4.1.2

Z (m) o, (1072 Pa) 6y (1072 Pa) .. (1072 Pa) D. (10713 C/m?)
Exact Current Exact Current Exact Current Exact Current
study study study study
-0.5 21.998 24.153 -11.276 —-8.622 0 1.218 -9.7 -255.1
—-0.475 19.072 18.46 —9.944 —-7.244 —-5.245 —4.72 -9.9 —280.7
-0.45 16.173 15.119 —-8.635 -5.726 -9.693 —-10.057 -10.7 -300.1
—-0.425 13.295 12.005 -7.346 —4.232 —13.349 —-13.804 -11.7 -312.4
-0.4 10.435 8.433 —-6.073 -2.861 -16.219 —-17.025 -13.1 -322.6
-0.4 15.713 18.175 -1.122 —-0.526 -16.219 —-16.701 -13.1 -286.9
-0.3 9.243 10.732 —-0.584 0.128 -25.983 —27.945 -16.3 —-288.9
-0.2 4.082 4.962 —-0.057 0.727 —-30.786 -33.35 -28.1 —294.7
—-0.1 —-0.581 —-0.551 0.523 1.426 -31.346 -34.29 -54.6 -304.4
0 —5.482 -5.919 1.229 2.001 -27.741 -30.676 -109.8 -318.2
0.1 -11.397 —-12.345 2.21 2.856 —-19.429 -21.633 -222.6 -336.2
0.2 —-19.249 -21.261 3.325 3.615 -5.167 -5.914 —452.2 —358.8
0.3 -30.247 —-33.263 4.663 5.134 17.163 18.607 -919.2 —-386.2
0.4 —-46.061 -50.754 6.337 5.646 50.86 55.71 —1868.6 —418.7
0.4 -90.305 —81.047 34.295 30.588 50.86 55.754 —1868.6 —431.3
0.425 —41.864 —32.384 —-10.698 —-8.636 65.738 69.359 —7788.2 —6355.1
0.45 6.538 15.927 —-55.693 —-53.681 62.233 64.59 -13714 —-12283.3
0.475 55 64.126 -100.77 -99.077 40.337 41.44 —-19654 —18203.2
0.5 103.622 108.898 —-146.03 —143.082 0 —-0.515 -25616 —24173.9
Ay
r
0 .
X
Fig. 11. Star shape piezocomposite plate for the example given in Section 4.2.
(B) _
Gy =X, (43)
(B)
(Pz =X (44)
(B) _ 2
o = [r(1 + 0.1 cos 60)]* — 9, (45)



4850 H.M. Shodja, M.T. Kamali | International Journal of Solids and Structures 40 (2003 ) 48374858

0P = (42 — H){[r(1 + 0.1cos 60)]> — 9}, (46)
respectively. For this problem the kinematical boundary conditions are homogeneous
S, y,2) =0, m=1,2,...,4 (47)

Incorporation of the discontinuities in the derivatives of displacement fields and electric potential
function through the amending terms results in considerable improvement of the accuracy and convergence
rate. The amending terms associated with the layer made up of PZT-4 may be written as

@;13>PZT_4 = ¢EnB)Z7 m = 17 27 A 747 (48)

where the superscript PZT-4 corresponds to the material properties of the layer. To establish the effects of
the amending terms, the results on the variations of: electric potential @; shear stress o,.; and electric in-
duction D, through the thickness of the plate are computed with and without the amending terms and the
results are compared, Figs. 12-14. In Fig. 13, the value of ¢, is being plotted through the thickness at point
A (x = =2.7,y = 0), whereas the values of D, and @ shown in Figs. 12 and 14, respectively correspond to the
center of the plate. The variation of the displacement w on y =0 and z = H/2, along the x-direction is
shown in Fig. 15. It is seen that, while the effects of the amending terms on the electric potential and on the
vertical displacement are negligible, their influences on the stress ¢,, and the electric induction D, are great.
When the amending terms are included, the continuities of ¢,, and D, at the interface, z = 0 are correctly
computed. Exclusion of the amending terms yielded dramatic discontinuities at the interface, z = 0.
Although consideration of the amending terms has very little effects on the displacement field and the

240 - —— With amending tems
---A- - Without amending tenms

180 1

‘volt)

o 120

& (10

o
o
1

-05 -03 -0.1 0.1 03 05
Z(m)

Fig. 12. Distribution of the electric potential through the thickness at the center of the plate, pertinent to the example of Section 4.2.1.

‘A‘g —— Withamending tems
251 Pl 4 Wihout amending terms

Z(m)

Fig. 13. Distribution of the shear stress o,, through the thickness at point 4, pertinent to the example of Section 4.2.1.
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Z(m)

Fig. 14. Distribution of the electric induction D, through the thickness at the center of the plate, pertinent to the example of Section
4.2.1.

—— With amending temns
30 ---a--- Without amending tenms
2251
£
= 15
¥
7.51
0 T v T T *
-0.5 -03 -01 0.1 0.3 05

Z ()

Fig. 15. Distribution of the displacement w along the x-axis at y = 0 and z = H/2, pertinent to the example of Section 4.2.1.

electric potential, but their roles in computations of quantities like stress fields and electric induction, which
depend on the derivatives of the displacements and electric potential are quite important. Fig. 16 displays
the variation of the displacement u through the thickness of the plate at point 4. The distributions of the
displacement w, normal stresses g, and o, corresponding to the center of the plate are shown in Figs. 17-19,
respectively. Note that, ¢, attains, with high precision, the values of 0 and 1 on the lower and upper surface

-05 -0.3 -0.1 0.1 03 0.5
Z(m)

Fig. 16. Distribution of the in plane displacement u through the thickness at point 4, pertinent to the example of Section 4.2.1.
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Fig. 17. Distribution of the displacement w through the thickness at the center of the plate, pertinent to the example of Section 4.2.1.
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Fig. 18. Distribution of the normal stress o, through the thickness at the center of the plate, pertinent to the example of Section 4.2.1.

Z(m)

Fig. 19. Distribution of the normal stress o, through the thickness at the center of the plate, pertinent to the example of Section 4.2.1.

of the plate, respectively. Moreover, the continuity of ¢, at the interface between the two layers is accurately
captured. In this subsection the calculations are carried out using 15th degree polynomials.

4.3. Perforated piezocomposite plate

As an interesting example, consider the piezocomposite system shown in Fig. 20, where a piezoelectric
rod of rectangular cross-section is placed into a perforated thick plate whose piezoelectric properties are
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Fig. 20. Perforated piezocomposite plate for the example given in Section 4.3.
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Fig. 21. Distribution of the electric potential in the y—z plane, for the example of Section 4.3.1.

Fig. 22. Distribution of the displacement in x-direction in the y—z plane, for the example of Section 4.3.1.
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different from those for the rod. The material properties for each domain are given in Table 1. The
dimensions of the plate are H = 1 m, L, = L, = 2 m and the dimensions of the rod are /. =2m, H, = 1 m,
H, = 0.5 m. The plate is simply supported. The origin of the Cartesian coordinates is located at the centroid
of the piezocomposite system.

4.3.1. Mechanical loading
The upper face of the piezocomposite system is subjected to the following normal traction

X ny
f, = COS— COS—.

LT (49)

The electric potential on all faces are set equal to zero. For the example considered in this section, the
displacement and the electric potential boundary functions are the same as the ones presented for the
example studied in Section 4.1. In view of having homogencous boundary conditions,
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Fig. 24. Distribution of the normal stress o, in the y—z plane, for the example of Section 4.3.1.



H.M. Shodja, M.T. Kamali | International Journal of Solids and Structures 40 (2003) 4837-4858 4855

Su(x,3,2) =0, m=1,2,...,4, (50)
and the boundary functions for the rod may be written as
P = P (47 — H}) (4 — HD)|, m=1,2,3,4. (51)

Fifteenth degree amending terms and general polynomials for the displacements and electric potential
are employed. Figs. 21-30 show the distribution of: electric potential @; displacements u and w; stresses o,
Oy, 0., Oy, Oy, 0y; and electric induction D, in the y—z plane. It is observed that the presence of the
piezoelectric rod of rectangular cross-section remarkably disturbs the electromechanical field.

05 -1

Fig. 25. Distribution of the normal stress g, in the y— plane, for the example of Section 4.3.1.
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Fig. 26. Distribution of the normal stress o, in the y—z plane, for the example of Section 4.3.1.
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Fig. 30. Distribution of the electric induction D, in the y—z plane, for the example of Section 4.3.1.

5. Conclusion

A rational three-dimensional treatment of piezocomposite plates with arbitrary geometry and boundary
conditions subjected to electromechanical loadings is given. Continuity of the generalized displacements
and tractions across the interfaces are enforced through introduction of the amending terms. If the
derivatives of the generalized displacements are discontinuous across any interface, it is seen that exclusion
of the amending terms for the associated quantities may lead to unrealistic results at that interface. In-
corporation of the amending terms has a remarkable role in improvement of the accuracy and convergence
rate. Another key feature of the proposed method is the relative ease in modeling nonhomogenecous
kinematical boundary conditions, such as applying electric potential. In addition to the multilayer piezo-
composites, the present method can easily handle piezocomposites containing inhomogeneities of various
geometries.
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